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1. Transpose Transformations

Definition 1. Let A be an m× n matrix.
The transpose of A, which we denote by A∗, is the n × m matrix whose jth

row is the jth column of A.

Definition 2. Let T : Rn → Rm be a linear transformation.
The transpose of T is the linear transformation T ∗ : Rm → Rn given by

T ∗(w) = A∗w, where A = [T (e1) | · · · | T (en)].

Remark 1. Let A be an m × n matrix. Recall that A corresponds to a lin-
ear transformation TA : Rn → Rm which is given by TA(v) = Av. Then
A∗ corresponds to a linear transformation TA∗ : Rm → Rn which is given by
TA∗(w) = A∗(w). Thus T ∗A = TA∗ .

Let T = TA be the transformation corresponding to A. We know that the
columns of A are the destinations of the standard basis vectors of Rn under the
transformation T . Thus the image of T is spanned by these vectors. On the other
hand, the columns of T ∗ are the rows of A, so the image of T ∗ is a subspace
of Rn which is spanned by the rows of A. We now investigate the relationship
between the image of T ∗ and the kernel of T .

2. Column Spaces and Row Spaces

Definition 3. Let A be an m× n matrix.
The image of A is the image of TA.
The kernel of A is the kernel of TA.
The column space of A is the subspace of Rm spanned by the columns of A,

and is denoted by col(A).
The row space of A is the subspace of Rn spanned by the rows of A, and is

denoted by row(A).
The null space of A is the set {x ∈ Rn | Ax = 0}, and is denoted by ker(A).
The rank of A is the dimension of the column space of A.
The nullity of A is the dimension of the null space of A.

Let A be an m× n matrix. The four fundamental subspaces associated to A
are col(A), row(A), ker(A), and ker(A∗).
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Proposition 1. Let A be an m×n matrix. Perform forward elimination on the
matrix A to achieve B = OA, where O is invertible and B is in row echelon form.
Perform backward elimination on B to achieve C = UA, where U is invertible
and C is in reduced row echelon form. Then

(a) col(A) = row(A∗);
(b) col(A) = img(TA);
(c) row(A) = img(T ∗A);
(d) the rank of A is equal to the number of basic columns of B (or of C);
(e) the nullity of A is equal to the number of free columns of B (or of C);
(f) ker(A) = ker(B) = ker(C);
(g) row(A) = row(B) = row(C);
(h) dim(col(A)) = dim(row(A));
(i) the nonzero rows of B (or of C) form a basis for row(A);
(j) the last m− r rows of O (or of U) form a basis for ker(A∗), where r is

the rank of A.

Proof.
(a) col(A) = row(A∗)
This follows from the definition of transpose.

(b) col(A) = img(TA)
This follows fact that the image of TA is spanned by the destinations of the

standard basis vectors; these destinations are the columns of A.

(c) row(A) = img(T ∗A)
This follows from (a) and (b).

(d) the rank of A is equal to the number of basic columns of B (or of C)
The rank of B is clearly equal to the number of basic columns of B. The rank

of A equals the rank of B because B = UA, where U is an invertible matrix.
The transformation TU is an isomorphism, so a basis for the image of TA is sent
by TU to a basis for the image of TB .

(e) the nullity of A is equal to the number of free columns of B (or of C)
The nullity of A is the number of free columns by the Rank Plus Nullity

Theorem: dim(ker(A)) = dim(ker(TA)) = n−dim(img(TA)); since dim(img(TA))
is the number of basic columns, n − dim(img(TA)) must be the number of free
columns.

(f) ker(A) = ker(B) = ker(C)
This is given by the fact that composing on the left with an injective transfor-

mation does not change the kernel of a transformation. Since B = OA, we have
ker(A) = ker(TA) = ker(TO ◦ TA) = ker(TOA) = ker(OA) = ker(B). Similarly,
ker(A) = ker(C).
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(g) row(A) = row(B) = row(C)
If E is an elementary invertible matrix and D is any compatibly sized matrix,

then the rows of ED are a linear combination of the rows of D; one sees this
by considing the effect of the corresponding elementary row operation on D.
Thus row(ED) ⊂ row(D). But E−1 is also an elementary invertible matrix, so
row(D) = row(E−1ED) ⊂ row(ED), which shows that row(ED) = row(D) and
E does not change the row space.

Since B = OA and O is a product of elementary invertible matrices, we see
that row(B) = row(OA) = row(A). Similarly, row(C) = row(A).

(h) dim(col(A)) = dim(row(A))
It is apparent from the definition of row echelon form that the nonzero rows

of B form a basis for the row space of B.
By (d), dim(col(A)) = dim(col(B)). The dimension of col(B) is equal to the

number of pivots in B (or C), which is equal to the number of nonzero rows
of B (or C), which is equal to the dimension of row(B). Thus dim(col(A)) =
dim(col(B)) = dim(row(B)) = dim(row(A)).

(i) the nonzero rows of B (or of C) form a basis for row(A)
The nonzero rows of B (respectively C) form a basis for row(B) (respectively

row(C)). By (g), row(A) = row(B), and the result follows.

(j) the last m− r rows of O (or of U) form a basis for ker(A∗)
We show this for O; the proof for U is the identical.
Set k = m − r and note that dim(ker(A∗)) = k. This follows from the Rank

Plus Nullity Theorem and (g): we have r = dim(col(A)) = dim(row(A∗)) =
dim(col(A∗)). Thus dim(ker(A∗)) = m− dim(col(A∗)) = m− r.

Since O is invertible, its rows are linearly independent. Indeed, TO is an
isomorphism, so ker(O) = {0}; thus dim(row(O)) = dim(col(O)) = dim(Rm) −
dim(ker(O)) = m, since dim(ker(O)) = 0. Then row(O) = Rm, so the rows of O
are a basis for Rm.

Thus the last k rows of O are linearly independent, so if these vectors are in
ker(A∗), they are a basis for it. We only need to show that they are in ker(A∗).

Since B = OA, we have B∗ = A∗O∗. The last k rows of B are zero, so the
last k columns of B∗ are zero. If x∗ is one of the last k rows of O, then x is one
of the last k columns of O∗, and A∗x is one of the last k columns of B∗; that is,
it is zero. Thus x is in the kernel of A∗. �
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3. Perpendicular Decompositions

Proposition 2. Let U ≤ Rn. Set

⊥(U) = {v ∈ Rn | u · v = 0 for all u ∈ U}.
Then

(a) ⊥(U) ≤ Rn;
(b) U ∩ ⊥(U) = {0};
(c) ⊥(⊥(U)) = U .

Proof. Exercise. �

Proposition 3. Let A be an m× n matrix. Then
(a) row(A) = ⊥(ker(A)) and Rn = row(A)⊕ ker(A);
(b) col(A) = ⊥(ker(A∗)) and Rm = col(A)⊕ ker(A∗).

Proof. In light of the fact that col(A) = row(A∗), if we prove (a), then (b) will
follow simply by replacing A with A∗. Thus we prove (a).

The coordinates of Ax are the dot products of the rows of A with the vector x.
If x ∈ ker(A), the Ax = 0 (the zero vector). Thus each of the coordinates of Ax
is equal to 0 (the zero scalar). This shows that each row of A is perpendicular
to any vector in the kernel of A. Then any vector in the span of these rows is
also perpendicular, because dot product is linear.

On the other hand, if x is not in the kernel, then it has a nonzero dot product
with one of the rows, so it is not perpendicular to the row space. Therefore
⊥(ker(A)) = row(A).

Since the row space of A is perpendicular to the kernel of A, we see that
row(A)∩ker(A) = {0}. Now combine the Subspace Dimension Formula, the fact
that dim(row(A)) = dim(col(A)), and the Rank plus Nullity Theorem to obtain

dim(row(A) + ker(A)) = dim(row(A)) + dim(ker(A)) + dim(row(A) ∩ ker(A))

= dim(col(A)) + dim(ker(A)) + 0

= dim(Rn).

Since row(A) + ker(A) is a subspace of Rn with the same dimension, it must be
all of Rn. Therefore Rn = row(A)⊕ ker(A). �

Corollary 1. Let U ≤ Rm. Then Rm = U ⊕⊥(U).

Proof. Let {u1, . . . , ur} be a basis for U . Form the matrix

A = [u1 | · · · | ur | 0 · · · | 0].

Then col(A) = U , and ⊥(col(A)) = ker(A∗) with Rm = col(A)⊕ ker(A∗). �

Example 1. Let U be the subspace of Rm spanned by the vectors {v1, . . . , vn}.
(a) Find a basis for U .
(b) Find a basis for ⊥(U).

Method of Solution. Form the m × n matrix A = [v1 | · · · | vn]. Use forward
elimination only to row reduce the augmented matrix [A | I] to an augmented
matrix [B | O]. A basis for U is given by the columns of A which correspond to
the basic columns of B. Since U = col(A), a basis for ⊥(U) is given by the last
m− r rows of O, where r = dim(U). �
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4. Exercises

Exercise 1. Let U ≤ Rn. Show that
(a) ⊥(U) ≤ Rn;
(b) U ∩ ⊥(U) = {0};
(c) ⊥(⊥(U)) = U .

Exercise 2. Let

A =

 2 0 −1 4 1
−2 0 2 −2 0
0 0 1 2 2

 .

Let T : R5 → R3 be the linear transformation given by T (v) = Av.
(a) Find a basis for img(T ) and for ker(T ).
(b) Find a basis for ⊥(img(T )) and for ⊥(ker(T )).

Exercise 3. Let U be the subspace of R4 spanned by the vectors

v1 = (1, 0,−1, 1), v2 = (2, 1, 1, 0), and v3 = (0,−1,−3, 2).

(a) Find a basis for U .
(b) Find a basis for ⊥(U).
(c) Find a matrix A such that U = ker(A).

Exercise 4. Let

A =


1 2 0 2 1
0 1 1 1 0
2 1 1 0 1
0 4 0 5 1

 .

Find a basis for each of the four fundamental spaces associated to A.
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